
NOTICE:
The copyright law of the United States (Title 17, United States Code)
governs the making of reproductions of copyrighted material. One specified
condition is that the reproduction is not to be “used for any purpose other
than private study, scholarship, or research.” If a user makes a request for,
or later uses a reproduction for purposes in excess of “fair use,” that user
may be liable for copyright infringement.

RESTRICTIONS:
This student work may be read, quoted from, cited, and reproduced for
purposes of research. It may not be published in full except by permission
by the author.

Abstract
Early approaches in computational chemistry attempted to develop a workhorse density functional
theory (DFT) functional applicable for use in a variety of chemical applications. However, modern
improvements have led to the development of numerous functionals, necessitating an automated
method of benchmarking to determine appropriate functionals for different applications. An area
where DFT struggles to attain chemical accuracy is in predicting the energy for non-covalent
interactions (NCIs), an important class of interactions throughout every chemical discipline. One
method of accounting for these interactions is by using an empirical dispersion correction.
CCBDB.py (Computational Chemistry Benchmark DataBases) is a program implemented in the
Python programming language and designed to benchmark NCI energies and optimize dispersion
correction parameters using an automated workflow. This program is relevant to non-specialists
looking to determine an appropriate functional for specific applied calculations and also for
specialists formulating new functionals and dispersion corrections.

Introduction
Density functional theory has become a valuable tool for theorists and experimentalists

alike. Due to the approximations inherent in DFT, an ever-expanding number of density
functionals have been introduced, each with a range of strengths and weaknesses in describing
particular chemical phenomena. While most DFT methods excel in describing short-range
interactions such as covalent bonding, a consistent failure of DFT is in the description of non-
covalent interactions, which act over longer distances. A common approach to address this
deficiency is the application of an empirical dispersion correction to the energy calculation. In
order to assess the performance of DFT methods and dispersion corrections, numerous benchmark
databases have been developed, each containing systems of interest, with energies calculated using
a high-level method for comparison.

In the following section, the foundations of DFT will be described, and the different classes
of functionals will be outlined, highlighting specific popular functionals in each class. Next, the
Grimme D3 dispersion correction will be presented, and each damping function will be presented.
An example demonstrating the poor performance in DFT for noncovalent systems and the
importance of dispersion corrections will be fully elucidated. Finally, a series of relevant NCI
benchmark databases will be detailed, including both small benchmark sets and large supersets.

DFT methods
In 1964, Pierre Hohenberg and Walter Kohn proved that the ground state electronic energy

of a system is fully dependent on the electron density (1). This proof was fundamental for the
development of density functional theory (DFT). One major advantage of DFT over approaches
such as a wave function approach is the computational efficiency of a density approach. While
wave functions for an N electron system contain 4N variables (three spatial and one spin coordinate
for each electron), the electron density only depends on three spatial coordinates, regardless of the
system size (2). However, the Hohenberg-Kohn Theorem does not specify the functional that links
the electron density to the energy, and as such a large amount of effort has been focused towards
developing approximate functionals to describe the ground states of many-electron systems (3).

Early DFT models attempted to find an energy functional in an orbital-free setting, in order
to maintain the efficient three-variable system; these models proved to be fairly effective in certain

2

metallic systems but failed to predict fundamental phenomena such as bonding. By introducing
orbitals as a method of representing the electron density, Kohn and Lu Jeu Sham produced a more
representative kinetic energy term, the main issue in orbital-free DFT (4). However, this approach
increases the complexity of the system from 3 to 3N, sacrificing part of the efficiency of DFT in
exchange for better accuracy. In Kohn-Sham DFT, the total energy is decomposed into the form
𝐸 [ρ] = 𝑇 [ρ] + 𝐸 [ρ] + J[ρ] + 𝐸 [ρ], where T is the total kinetic energy (assuming non-
interacting electrons), Ene and J are potential energy terms, and Exc is the exchange-correlation
term. The existence of Exc is necessitated by the assumption of non-interacting electrons, and in
essence serves as a catch-all term for the energetic effects that are ignored in T. These effects
include electron correlation, where the movement of one electron is altered by interaction with
another electron, and electron exchange, where identical electrons are repelled as a result of the
Pauli Exclusion Principle. For most systems, even simple approximations of Exc yield accurate
results for most systems, however, the accurate description of effects such as dispersion, which
are driven by electron interaction, will be highly dependent on the strength of this approximation
(2).

Many popular functionals use a generalized gradient approximation (GGA) approach,
making the exchange and correlation energies dependent on both the electron density and
derivatives of the density. Some of these functionals, such as LYP (5), are parameterized using
empirical data, while others, such as PBE (6), are derived from expected properties of the exact
functional (2). Hybrid methods incorporate the exchange energy from Hartree-Fock theory and are
typically parameterized using experimental data. The quintessential example of a hybrid method
is B3LYP (7). In 2006, B3LYP was the functional of choice in 81% of the publications where a
functional was mentioned in the title or abstract (8).

Range-separated methods are another class of DFT functionals that are gaining popularity
in modern uses. These methods developed in order to limit self-interaction errors, which are
particularly troublesome for Rydberg-type excited states and anionic systems with low electron
affinities. In DFT, self-interaction errors manifest when loosely bound electrons are erroneously
treated as unbound electrons; these electrons are bound by the most diffuse orbital and are therefore
confined to the correct physical space by a well-chosen basis set but would drift away from the
atom for an extended basis set. Range-separated methods address this issue by partitioning the
electron-electron operator of the exchange energy into short-range and long-range parts, which
leads to the correct description of loosely bound electrons due to correct theoretical methodology,
not error cancellation (2); one popular functional of this type is B97X (9).

Dispersion Corrections

Hydrogen bonding and London dispersion forces are omnipresent throughout biological
and macromolecular systems. Thus, an efficient and accurate treatment of these and other non-
covalent interactions (NCIs) would be highly applicable to modern research in every chemical
discipline. Coupled-cluster methods such as CCSD(T), generally considered to be the “gold
standard” of chemical accuracy, provide highly accurate results for NCI systems but scale on the
order of N7, making these and similar methods inaccessible for even medium-sized systems
(N>20). DFT methods scale on the order of N3 – N5, a much more modest computational cost,
however, DFT consistently fails to accurately describe dispersion forces. This failure is due to the
exchange-correlation approximations used in the design of each DFT functional (10). While the
energies of short-range (local) interactions (<2 Å) are generally accurate within DFT, no
component of the functional can properly describe the behavior of electrons through the medium-

3

and long-range (non-local) scales. London dispersion is particularly challenging for DFT: the
London dispersion force is generated by non-local electron interactions, but the exchange-
correlation functional only acts locally (11).

The most popular method of dispersion correction is the additive empirical correction
proposed by Stefan Grimme (12). This correction, denoted D/D2/D3 (D2 and D3 corresponding
to methodological improvements over the original D correction) proposes a damped pairwise
interatomic potential
 ∆𝐸disp. = − ∑ ∑

𝐶𝑛,𝐴𝐵

𝑟𝐴𝐵
𝑛 𝑓

𝑑,𝑛
(𝑟𝐴𝐵)𝑛=6,8𝐴𝐵 [1]

where Cn,AB are dispersion coefficients derived for every pair of atoms AB, rAB is the interatomic
distance, and fd,n is the damping function that ensures convergence of the dispersion correction.
The r –6 distance-dependence of this correction is meant to mirror the non-local scale of London
dispersion forces

This correction can take one of several forms, each tunable through a series of parameters
specific to each functional and typically optimized at the def2-QZVP basis set. The original
damping function approach, called zero damping (Equation 2), utilizes a cutoff radius R0

AB
tabulated for every atomic pair, a radius scaling parameter sR,n, a global scaling parameter sn, and
steepness parameters n (12).
 𝑓 , (𝑟) =

,

 [2]

Becke and Johnson proposed a dispersion correction model that explicitly incorporates the
actual electronic structure of the system (13). BJ-damping (Equation 3) modifies the damping
function by defining the cutoff radius as 𝑅 = 𝐶 , 𝐶 ,⁄ and introducing two free fit
parameters, a1 and a2 (14).

 𝑓 , (𝑟) = [3]

Other damping functions have been proposed as modifications to the D3 methodology. The
optimized power (OP) damping function attempts to generalize BJ-damping by adding the
additional parameter 6, such that n =n in Equation 3 with 8 = 6 + 2 (15). Although OP-damping
adds additional computational complexity during the optimization process due to the additional
parameter, OP-damped corrections show slightly higher accuracy in comparison to BJ-damping.
An opposite approach, C-six-only (CSO) damping, attempts to reduce the number of empirical
parameters by employing a sigmoidal interpolation function incorporating only a single adjustable
parameter; this approach yields results similar to BJ-damping (16).

Applying dispersion corrections to standard DFT methods drastically improves the
chemical accuracy of DFT in non-covalent systems. As an example, we can consider the stability
of the -stacked adenine-thymine dimer (Figure 1). This system models the interaction between
these two nucleobases, a common interaction within DNA, the genetic polymer that provides the
basis for life on Earth. The benchmark calculations are calculated by the “gold standard” high-
accuracy method CCSD(T), extrapolated to the complete basis set limit.

4

Figure 1 -stacked adenine-thymine dimer at equilibrium intermolecular distance

Functional/Basis Set Stabilization Energy
(kcal/mol)

Difference, % Error
(kcal/mol)

CCSD(T)/CBS -11.730 --
B3LYP/def2-QZVP +1.061 + 12.729 (109%)
B3LYP-D3(BJ)/def2-QZVP -11.950 – 0.220 (1.9%)

Table 1 Adenine-thymine dimer stabilization energy

Table 1 gives the stabilization energy (given as Emonomers - Edimer) of the adenine-thymine
dimer as calculated by B3LYP with and without the D3 correction, in comparison to the gold-
standard energy calculation. This system is expected to be highly attractive, as DNA base-stacking
interactions are important to the stability of DNA strands (17). The uncorrected B3LYP energy
would predict a repulsive interaction, with an overall error of over 100%. The corrected B3LYP-
D3 energy is well within the 1 kcal/mol threshold desired for a chemically accurate description of
these systems.

Improving the accuracy of DFT in systems involving non-covalent interactions (NCI) is a
desirable alternative to relying upon high-level calculations such as CCSD(T)/CBS, due to the
considerable computational cost of performing these calculations. A variety of datasets, using
high-accuracy calculations using coupled-cluster methods such as CCSD(T), have allowed for
benchmarking the performance of computational methods including DFT. The following section
will detail a variety of NCI benchmark sets that can be used to test the effectiveness of dispersion
correction methods.

NCI Databases

NCI databases are designed to provide benchmarks for various non-covalent phenomena
in chemical systems. Generally, these datasets present multiple phenomena relevant to a specific
chemical discipline, such as biochemistry or materials science. While many earlier benchmark sets
are composed entirely of equilibrium-geometry (van der Waals minimum) structures, later work
has produced datasets containing radial curves, such that the benchmarks can test performance at
non-equilibrium geometries. Reparameterization of dispersion corrections using radial curve
datasets has yielded improved performance over the equilibrium-only parameters.

5

S22 and its Extensions
The S22 benchmark set (Figure 2) consists of 22 complexes ranging in size from small (6

atoms) to large (30 atoms) systems. The non-covalent interactions in the S22 set roughly fall into
three categories: hydrogen bonded (H-bond) complexes, dispersion-stabilized complexes, and
mixed (combination H-bond and dispersion) complexes. The basis for the design of this data set
is as a screening set for the JSCH-2005 benchmark set, a larger set of biochemical benchmarks.
While the extended set contains a large number of DNA base pair and amino acid pair complexes,
and is mainly intended for the study of biomacromolecules, the S22 training set provides a broad
baseline that is more broadly applicable to testing the general treatment of dispersion by different
computational methods (17).

Figure 2 The S22 benchmark database complexes (18)

 Řezáč, Riley, and Hobza introduced the S66 database as a balanced expansion to the S22
set, focusing on NCIs in bioorganic molecules. A special focus was the incorporation of aromatic-
aliphatic and aliphatic-aliphatic dispersion interactions and single hyrdogen bonds (19). Several
radial curves have been developed for these sets. The S22x5 radial curve set (20) expands the S22
set to add one shortened (0.9r) and three elongated (1.2r, 1.5r, 2.0r) geometries. The S66x8 radial
curve set (19) was introduced at the same time as the S66 set, and incorporates two shortened
(0.90r, 0.95r) and five elongated (1.05r, 1.10r, 1.25r, 1.50r, 2.00r) geometries. The S22x7 and
S66x10 extensions (21) added two additional shortened geometries (0.7r, 0.8r) to the radial curves
of S22x5 and S66x8, respectively, in order to balance the number of shortened and elongated
geometries.

6

X40
The X40 dataset (Figure 3) contains 40 non-covalent complexes involving halogens

participating in a variety of interaction types (23). The complexes are grouped into several
interaction types: London Dispersion, induction, dipole-dipole interaction, -stacking, halogen-
interactions, halogen bonds, and hydrogen bonds. This dataset is produced by the same group that
designed the S66 dataset and is constructed analogously to that set such that the two sets are fully
compatible. The X40x10 radial curve set is composed of four shortened (0.80r, 0.85r, 0.90r, 0.95r)
and five elongated (1.05r, 1.10r, 1.25r, 1.50r, 2.00r) geometries. The X40 includes the halogens
F, Cl, Br, and I; however, iodine cannot be calculated using small basis sets, so an analogous set
excluding all iodine compounds, X31, can also be constructed (21).

Figure 3 The X40 benchmark database complexes (23)

L7
Many of the benchmark databases available focus on the performance of DFT functionals

and dispersion corrections for small and medium systems, few datasets exist for evaluating the
same performance for large systems. The L7 database consists of seven large systems ranging from
48 to 112 atoms, representative of major dispersion-dominated biochemical motifs (24). The
importance of this database is clear for biochemical systems, where noncovalent interactions
accumulate for larger systems and impact macromolecular structure.

Figure 4 The L7 database complexes

7

NCIBLIND10
The NCIBLIND10 dataset contains radial curves for 10 dimers ranging in size from water

(6 atoms) to ethylenedinitramine (EDNA, 32 atoms) (22). While most benchmark sets are mainly
composed as a mix of dispersion-dominated or hydrogen-bond-dominated dimers, the compounds
in this set were chosen to prove a spectrum ranging between these two extremes, with the dipole
moment strength roughly corresponding to the difficulty of the system. The NCIBLIND10 radial
curves are not of uniform size and are generated by specifically varying the interaction/bond
length, instead of scaling the distance between the monomers as in the radial curves in S66x8.

In order to successfully parameterize dispersion corrections, it is desirable to have as
representative of a benchmarking set as possible. To that end, multiple efforts have been focused
on developing benchmarking supersets composed of many smaller datasets, in an effort to form a
comprehensive database appropriate for many applications. While the sweeping scale of these
databases does allow for highly representative training and testing sets in the parameterization
process, the unwieldy amount of data encompassed in these supersets drastically increases the
computational cost of performing an optimization. Compromises between the analytical power of
large subsets and the computational efficiency of smaller sets have been found through various
efforts to create representative subsets that preserve the behavior of the supersets, but with a
reduced number of systems.

GMTKN and Diet GMTKN55

Goerigk and Grimme proposed a definitive database for general main group
thermochemistry, kinetics, and non-covalent interactions (GMTKN24), the first major example of
a superset database, intended for benchmarking DFT functionals (25). This super set is composed
of 731 data points from 24 different benchmark datasets, including four new sets proposed in that
work. Benchmarking in GMTKN is aided by the use of weighted total mean absolute deviation
(WTMAD), specifically the weighting scheme WTMAD-2, which scales the subset error
depending on the magnitude of the energies in that subset. The original database was expanded to
GMTKN30 the following year, adding six new datasets and modifying three from the existing
superset, increasing the total number of data points to 841 (26). The newest superset in this lineage
is GMTKN55, a complete overhaul of the previous database (27). Many of the subsets were
updated to include new reference values or incorporate extensions to the original and only three
subsets were left unchanged. The total number of data points has expanded to 1505, more than
double the number of original datapoints. 2462 single-point calculations are required to obtain
benchmarks against the entire GMTKN55 database, presenting a significant computational
expense for using this superset to parameterize dispersion corrections.

The ‘Diet GMTKN’ subsets proposed by Tim Gould, chosen using a stochastic genetic
approach, are meant to reproduce the ranking of functionals by the full GMTKN55 superset using
a fraction of the computational power (28). These subsets, containing 30, 100, and 150 systems
from the full superset, reproduce the quantitative errors found through full-set benchmarking and
are increasingly a representative sample of the full set: in the 100-system subset, 75% of the sets
comprising the superset are represented. While these subsets are highly suitable for pre-screening
operations, as well as dispersion correction parameterization, they are not as powerful as the full
GMTKN55 database and are not meant for deep analysis.

8

Sherrill’s D3 Database
 In 2016, Smith et al. proposed revised damping parameters for the D3 dispersion correction
(21); these parameters are the ones most commonly used today. Their training (1526 systems) and
validation (6773 systems) sets were developed with the recognition that fully focusing on
equilibrium-geometry accuracy does not ensure accuracy across the entire potential energy system.
To this end, both the training and validation sets are composed of radial curve sets, several of
which (S22x7 and S66x10, as already presented examples) were extended to include more
shortened geometries for this work. The training set, larger than the full GMTKN55 database,
provided a powerful tool for reparameterizing the D3 dispersion correction, and the expansive
validation set allows for extensive analysis of the accuracy of any computational method in
describing dispersion.

MGCDB82 and MG8

Mardirossian and Head-Gordon proposed the MGCDB84 superset in their extensive
review of density functional theory (29). The MGCDB84 set is composed of databases of NCI,
isomerization energy, thermochemistry, and barrier height benchmarks, and consists of 4986 total
systems. The NCI benchmarks alone comprise 2078 systems, comparable to the size of the entire
GMTKN55 superset. While the deep analysis of 200 density functionals that was facilitated by the
size of MGCDB84, the extreme computational complexity of this set lends itself well to a
subsetting approach similar to that used to develop the ‘Diet GMTKN’ set. Bun Chan recently
generated such a subset, MG8, containing just 60 systems from the total superset (30). The systems
comprising MG8 were determined using lasso regression and forward selection to produce the
subsets in each category that were most highly correlated with the overall mean absolute deviation
(MAD) the superset. Next, systems were trimmed from each set until a small-but-representative
subset of systems was produced. The MG8 set is intended as a qualitative measure of performance:
MADs below the ⁓4 kJ/mol (⁓1 kcal/mol) threshold are likely to indicate a robust computational
method.

Experimental
 CCBDB is a program designed to automate the benchmarking of computational methods
and optimize the parameters of the D3 dispersion correction. The program is fully implemented in
Python, designed to be fully compatible with open data principles and accessible to chemists with
a broad range of coding abilities. The dispersion correction code easily allows for the addition of
new damping functions, and the program interface is being developed to be increasingly program-
agnostic, to allow for broader use as a computational chemistry tool. Figure 5 shows the full
automated workflow of the program. After specifying the desired databases to be benchmarked for
a specific computational method, no further input is required throughout the entire benchmarking
workflow, making CCBDB invaluable as a benchmarking tool.

The original framework of CCBDB allowed for a computational method to be compared
to a single database, as a proof of concept of the automation process within the program. The
program was able to successfully generate Gaussian input files, submit Gaussian jobs to a server-
based implementation, import the calculation results, and process the results for presentation in the
program readout. After this system was fully functional, the next step was to develop a method of
applying Grimme’s D3 correction to the results. Rob Paton and Kelvin Jackson’s Python
implementation of D3 (pyDFTD3) was a suitable starting point, but only allowed for calculation

9

of a single calculation per function call (31). The original program was modified to allow for high-
throughput calculation by developing an interface that allowed direct access via CCBDB. The D3
dispersion correction was implemented to support both zero-damping and BJ-damping methods;
other damping functions could be added to the program with less than fifty added lines of code.

Figure 5 Schematic of the CCBDB automated workflow

After enabling dispersion corrections, the next outstanding issue was the one-database limit
of the program. Large amounts of body code were generalized to allow for multi-database
calculations, and a suite of single-database and multi-database descriptive statistics were
introduced into the program readout. After this recoding, the only limit on the possible number of
databases used in CCBDB is the number implemented in the program. In total, 10 databases are
currently supported: S22, S22x7, S66x10, X31, X31x10, X40, NCIBLIND10, MG8, L7, and
CHBDE (a small set of experimental bond dissociation energies that is useful for testing). The
main bottleneck in adding additional databases is the highly heterogeneous nature of data available
from different groups, which hinders the ability to uniformly process the data into the necessary

10

form to be used in CCBDB. Parallel job submission was introduced in order to speed up the data
generation process for systems with sufficient capacity, and an interface with ORCA was
developed, to improve the versatility of the program. The input/output files will be converted to
JSON format in an upcoming update, in order to reduce the overall data storage size requirements
and make CCBDB more program-agnostic, which should easily allow

The next major feature introduced in CCBDB was the ability to optimize dispersion
correction parameters for a specific computational method. The option of inputting manual
parameters was introduced during the initial implementation of the dispersion correction but was
not intended for use in optimization contexts. A Nelder-Mead simplex optimization was selected
for the optimization in order to avoid calculation of the gradient, however, it may be necessary to
incorporate a gradient-based method to speed up convergence. Currently, CCBDB begins
optimization at the literature parameters if they exist for the functional being used or at zero for
functionals without existing parameters. A planned improvement to the optimization method is to
apply a hyper-parameter optimization procedure to determine a better starting point, in order to
encourage quicker optimization convergence (32).

CCBDB Usage
Initiating CCBDB requires a single function call to begin the automated workflow. In this

function call, the method (functional and basis set), databases, and dispersion correction options
are specified. In this section, the input and output of two CCBDB function calls are described to
demonstrate the functionality of the program.

Basic Benchmarking

Initiating the program for basic benchmarking requires nothing more than specifying a
method and desired datasets (Figure 6).

Figure 6 CCBDB input for benchmarking B3LPY/def2-QZVP for the S22 database

The program will then attempt to load the energy calculations from the system files. If the
calculations do not yet exist, the program will generate input files for the chosen quantum
chemistry program (the current default is Gaussian) and submit each input file to that program; on
super-computing clusters, it is possible to submit several jobs in parallel through CCBDB. The
final output (Figure 7) shows the reference values, calculated energies, and a number of descriptive
statistics.

11

Figure 7 Output file for benchmarking B3LYP/def2-QZVP with the S22 database

Benchmarking with Dispersion Corrections
Initiating the program for benchmarking with dispersion correction requires the same

specifications as the basic benchmarking, in addition to selecting a damping function (Figure 8).

Figure 8 CCBDB input for benchmarking B3LYP-D3(0)/def2-QZVP with the S22 database

The program will follow the same calculation steps as before, however, the D3 corrections
are recalculated each time. The final output shows similar information to the basic output, but with
the corrected energies and the D3 parameters used.

Benchmarking with Multiple Databases

CCBDB allows for benchmarking with several databases, using similar syntax to the basic
function calls, but adding additional databases (comma-separated) to the -db specifier. The
program follows the same calculation steps as with one database, but the final output includes
descriptive statistics for each database as well as for the combined sets (Figure 9).

Figure 9 Descriptive statistics output for multi-database benchmarking

12

Discussion
CCBDB is a versatile program with many functions relevant to either specialists,

nonspecialists, or both. The implementation of sets such as MG8 allows for quick benchmarking
that is highly suitable for groups developing new functionals. In particular, the transition to JSON
formatting for input/output files should allow for fully quantum-chemistry-program-agnostic
performance, very suitable for functionals not implemented in a popular program such as Gaussian.
CCBDB is fully compatible with large supersets such as the GMTKN or MGCDB databases,
provided that the required subsets have already been implemented in the program. In fact, once the
CCBDB database has been sufficiently expanded, it should be possible to develop and test new
supersets, using either full databases or components from them, in addition to testing new datasets
of any type.

A main focus of this program is the D3 dispersion correction. This does not preclude the
choice of using a different dispersion correction, however, this modification would require a
significant effort. At this point in time, the D3 correction is considered to be the top-of-the-line
empirical correction of its type and should continue to be for some time. The incorporation of new
damping functions (such as the OP or CSO functions outlined earlier) is a much easier undertaking,
and is one of high relevance, due to some initial findings that these functions perform as well as
the currently implemented functions. Thus, CCBDB is an excellent option for groups developing
new damping functions and would allow for speedy comparison to benchmark data.

Dispersion corrections are generally parameterized for use with the def2-QZVP basis set,
so chosen because its large size limits issues such as the basis set superposition error (BSSE). In
practice, however, this basis set is prohibitively large for use with larger systems and would require
months of computing time. Using a slightly smaller basis set in conjunction with D3’s literature
parameters increases the error of the system but may be preferable in some situations where the
computational cost would otherwise be much too high. A compromise is proposed by Hostaš and
Řezáč, wherein a smaller basis set, DZVP-DFT, with a small BSSE for its size, is used to
reparameterize D3 for small-basis-set applications (33). Their work produced new parameters for
D3, using all four common damping functions, for five common functionals, and yielded some
promising results for decreasing error when used with small basis sets. CCBDB provides an
excellent tool for producing parameters for any other functional using similar methodology.

The same automation that makes CCBDB highly suitable for specialists allows for it to be
successful in broader use as well. CCBDB is fully implemented in Python, one of the fastest
growing and most popular programming languages worldwide. This makes the program highly
accessible to chemists of all stripes in a way that code implemented in languages such as Fortran
cannot. Using CCBDB to benchmark a specific computational method requires only a single
function call, and the data is presented in a highly organized manner, allowing for quick analysis.

CCBDB is designed with open data in mind. The Python implementation of this code
allows for broad collaboration once the program is introduced, with each improvement increasing
the impact of this program. After calculations are run, the output data is stored, to prevent reduntant
calculations. To this end, all of those calculations will be made fully available online, such that
nonspecialists who hope to benchmark several common functionals and/or basis sets likely will
not even need to perform their own calculations, and can use the stored data, further reducing the
computational demands for using CCBDB.

13

Conclusion
Density functional theory is an increasingly popular topic for theoreticians and

experimentalists alike. While DFT methods are successful in their treatment of many chemical
phenomena, one particular failure is in describing noncovalent interactions. The use of dispersion
corrections such as the D3 correction allow for much more accurate descriptions of the energy of
these systems. For this purpose, a variety of benchmark databases exist to test the accuracy of
computational methods. CCBDB is a Python program designed to automate the benchmarking
process and optimize D3 parameters for any DFT functional. This program is relevant to both
specialists developing functionals and nonspecialists looking to find a suitable functional for a
specific application. The open-data-focused design of the program will allow for broad
collaboration in designing a highly valuable computational chemistry tool.

References
1. Hohenburg, P.; Kohn, W. Physical Review B 1964, 136 (3B), B864.

2. Jensen, F. Introduction to Computational Chemistry; John Wiley & Sons, Ltd.: Chichester,
2017.

3. Kryachko, E. S.; Ludeña, E. V. Physics Reports - Review Section of Physics Letters 2014, 544
(2), 123-239.

4. Kohn, W.; Sham, L. J. Phys. Rev. 1965, 140 (4A), A1133.

5. Lee, C. T.; Yang, W. T.; Parr, R. G. Phys. Rev. B 1986, 37 (2), 785-789.

6. Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77 (18), 3865-3868.

7. Becke, A. D. J. Chem. Phys. 1993, 98 (7), 5648-5652.

8. Sousa, S. F.; Fernandes, P. A.; Ramos, M. J. J. Phys. Chem. A 2007, 111 (42), 10439-10452.

9. Chai, J.-D.; Head-Gordon, M. Phys. Chem. Chem. Phys. 2008, 10 (44), 6615-6620.

10. Burns, L. A.; Vázquez-Mayagoitia, A.; Sumpter, B. G.; Sherrill, C. D. J. Chem. Phys 2011,
134, 084107.

11. Riley, K. E.; Pitoňák, M.; Jurečka, P.; Hobza, P. Chem. Rev. 2010, 110, 5023-5063.

12. Grimme, S.; J., A.; Ehrlich, S.; Krieg, H. J. Chem. Phys. 2010, 132 (15), 154104.

13. Becke, A. D.; Johnson, E. R. J. Chem. Phys. 2007, 127 (15), 154108.

14. Grimme, S.; Ehrlich, S.; Goerigk, L. J. Comput. Chem 2011, 32, 1456-1465.

15. Witte, J.; Mardirossian, N.; Neaton, J. B.; Head-Gordon, M. J. Chem. Theory Comput. 2017,
13, 2043-2052.

16. Schröder, H.; Creon, A.; Schwabe, T. J. Chem. Theory Comput. 2015, 11, 3163-3170.

17. Jurečka, P.; Špooner, J.; Černý, J.; Hobza, P. Phys. Chem. Chem. Phys. 2006, 8, 1985-1993.

18. Paton, R. S.; Goodman, J. M. J. Chem. Inf. Model. 2009, 49, 944-955.

19. Řezáč, J.; Riley, K. E.; Hobza, P. J. Chem. Theory Comput. 2011, 7, 2427-2438.

20. Gráfová, L.; Pitoňák, M.; Řezáč, J.; Hobza, P. J. Chem. Theory Comput. 2010, 6 (8), 2365-
2376.

14

21. Smith, D. G. A.; Burns, L. A.; Patkowski, K.; Sherrill, C. D. J. Phys. Chem. Lett. 2016, 7,
2197-2203.

22. Taylor, D. E.; Ángyán, J. G.; Galli, G.; Zhang, C.; Gygi, F.; Hirao, K.; Song, J. W.; Rahul,
K.; von Lilienfeld, O. A.; Podeszwa, R.; Bulik, I. W.; Henderson, T. M.; Scuseria, G. E.;
Toulouse, J.; Peverati, R.; Truhlar, D. G.; Szalewicz, K. J. Chem. Phys. 2016, 145, 124105.

23. Řezáč, J.; Riley, K. E.; P., H. J. Chem. Theory Comput. 2012, 8, 4285-4292.

24. Sedlak, R.; Janowski, T.; Pitoňák, M.; Řezáč, J.; Pulay, P.; Hobza, P. J. Chem. Theory
Comput. 2013, 9 (8), 3364-3374.

25. Goerigk, L.; Grimme, S. J. Chem. Theory Comput. 2010, 6, 107-126.

26. Goerigk, L.; Grimme, S. J. Chem. Theory Comput. 2011, 7, 291-309.

27. Goerigk, L.; Hansen, A.; Bauer, C.; Ehrlich, S.; Najibi, A.; Grimme, S. Phys. Chem. Chem.
Phys. 2017, 19, 32184.

28. Gould, T. Phys. Chem. Chem. Phys. 2018, Advance Article.

29. Mardirossian, N.; Head-Gordon, M. Molecular Physics 2017, 115 (19), 2315-2372.

30. Chan, B. J. Chem. Theory Comput. 2018, 14 (8), 4254-4262.

31. Paton, R.; Jackson, K. pyDFTD3.py. https://github.com/bobbypaton/pyDFTD3.

32. Jones, D.; Schonlau, M.; Welch, W. Journal of Global Optimization 1998, 13 (4), 455-492.

33. Hostaš, J.; Řezáč, J. J. Chem. Theory Comput. 2017, 13 (8), 3575-3585.

	Adams.pdf
	ADAMS_1
	ADAMS_2

