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Family game night is fun, except when you are playing Monopoly with your family who 

happens to have a competitive streak.  This pastime started with early board games, like 

Monopoly, and developed into the games we know and love today like Connect Four and The 

Game of Life.  Board games are enjoyable to many people, but often players do not realize just 

how much mathematics is found in them.  Overall, board game strategies are based in 

mathematics rather than just random chance with which they are usually associated.  Thus, 

analyzing simple games, understanding sample mathematical scenarios, and further exploring 

Monopoly, will further the public’s understanding of board games and their roots in 

mathematics.  By looking at simple games, the processes and theorems are better understood, 

and by focusing on specific cases, like the Gambler’s Ruin or Random Walk, will help to employ 

these concepts in a realistic scenario.  Lastly, by focusing on Monopoly and comparing the 

expected value of specific properties and property combinations, we can discover the best 

choices in order to force your opponent into bankruptcy.   

 The mathematics behind games is something very intriguing.  Some games clearly have 

basis in math, while others have it hidden.  Games like the Tower of Hanoi have a mathematical 

basis but seem more like a strategy game, while others like Connect 4 have a quick way to win.  

Monopoly on the other hand has a multitude of variables that need to be considered to develop a 

winning strategy.  There is diverse content in the large amount of articles that have been written 

exploring this popular game.  I wanted to explore Monopoly to give myself a leg up on all my 

friends.  Monopoly is a game of strategy that is based in many mathematical aspects.  I have 

heard from many people that I have either played with or have watched play that the red 

properties are winning properties and Boardwalk is not good to have.  I wanted to explore more 

in depth why this is so and the mathematical reasoning behind it. 
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 A vital part of this research is understanding Markov chains and how they relate to board 

games.  A Markov chain is a system with a finite number of states, where the chain moves from 

one state to another, and where the probability of moving from state i to state j is a number 𝑝𝑝𝑖𝑖𝑖𝑖 R 

(Ross 185).  In terms of a board game, state i is one space on the board, while state j is another 

and 𝑝𝑝𝑖𝑖𝑖𝑖 R is the probability of moving from the first space, say “Go” in the case of Monopoly, and 

landing on the second space, like Community Chest.  A vital part of my research involved 

transient and recurrent states of probability matrices.  Transient implies that once in state i, a 

process enters state i a finite number of times.  Recurrent implies that once in state i, the process 

will reenter this state infinitely, like the end of Chutes and Ladders.  In other words, recurrent 

means that once in that state, a process will always return, while transient implies it might not 

return (Ross 195-196).  Another important aspect of my research was the periods of states.  

Monopoly is ergodic, meaning it has positive recurrent, aperiodic states (Bilisoly).  This also 

means that the time to get back to state i, or around the board, is finite and that there is no pattern 

of movement because of the random probabilities of the die (Ross 204).    

 To understand the process of deriving these probabilities, we want to use a simple 

example.  This specific example can be found in Take a Walk on the 

Boardwalk by Stephen D. Abbott and Matt Richey.  Let there exist a circle 

cut into three parts.  Label these parts Jail, Go, and Policeman where Jail is 

state 1 and Go is state 2.  In this example, the rules of the Policeman space 

are in effect and thus, the Policeman does not have a state because the player 

will never stay on this space.  This is an easier method to calculate the probabilities as it takes 

out extra variables, but for later models, we will include it in our calculations.  The player will 
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move clockwise by flipping a coin, obtaining either a 1 or a 2.  Let the vector 𝑥𝑥𝑖𝑖 = �
𝑥𝑥1
𝑥𝑥2� be the 

probability that, after 𝑖𝑖 rolls, the player is in state 1 or state 2.  Thus, the column vector 𝑥𝑥0 = �01� 

represents that at the start of the game, a player will be located on Go.  The next vector, 𝑥𝑥1 = �10� 

represents that after one roll, the player will be in Jail with a probability of 1.  After two rolls, the 

player has a ½ chance of ending up in Jail or on Go, thus 𝑥𝑥2 = �
1
2
1
2

�.  Thus, the probability matrix 

is 𝑃𝑃 = �
1
2

1
1
2

0
�.   

The way to calculate the vector that explains the probability of landing in these states is 

best done by diagonalizing 𝑃𝑃.  In this form, 𝑃𝑃 = 𝑁𝑁𝑁𝑁𝑁𝑁−1, where 𝐷𝐷 is the diagonal matrix 

consisting of the eigenvalues of 𝑃𝑃 and 𝑁𝑁 is the matrix of the eigenvectors of 𝑃𝑃.  Using 

Mathematica, we obtained 𝐷𝐷 = �
1 0
0 −1

2
�  and 𝑁𝑁 = �2 −1

1 1 �.  To calculate the vector after 𝑛𝑛 

rolls, the equation is 𝑥𝑥𝑛𝑛 = 𝑃𝑃. 𝑥𝑥𝑛𝑛−1.  In terms of calculating with 𝑥𝑥0, the equation can be 

manipulated to create 𝑥𝑥𝑛𝑛 = 𝑃𝑃. 𝑥𝑥𝑛𝑛−1 = 𝑃𝑃. (𝑃𝑃. 𝑥𝑥𝑛𝑛−2) = ⋯ = 𝑃𝑃𝑛𝑛𝑥𝑥0 where 𝑃𝑃 = 𝑁𝑁𝑁𝑁𝑁𝑁−1.  For 

example, to obtain 𝑥𝑥10, the equation is,  

𝑥𝑥10 = 𝑁𝑁𝐷𝐷10𝑁𝑁−1𝑥𝑥0 = �2 −1
1 1 � . �

1 0
0 −1

2
�
10

. �
1
3

− 1
3

1
3

2
3

� . �01� = �
341
512
171
512

�. 
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Thus, the probability of landing on Go after 10 rolls is 171
512

≈ .334 and on Jail is 341
512

≈ .666.  This 

probability holds for any 𝑥𝑥𝑛𝑛 where 𝑛𝑛 ≥ 2.  There is a 1
3
 chance of being on Go and a 2

3
 chance of 

being in Jail.  If we were to take the limit of 𝑥𝑥𝑛𝑛, we would obtain 

lim
𝑛𝑛→∞

𝑃𝑃𝑛𝑛𝑥𝑥 = lim
𝑛𝑛→∞

𝑁𝑁𝑁𝑁𝑛𝑛𝑁𝑁−1𝑥𝑥 = �
2
3

2
3

1
3

1
3

� 𝑥𝑥 = �
2
3
1
3

�. 

This concept is based on a theorem from Markov processes.  To paraphrase this theorem, if P is 

an 𝑛𝑛𝑛𝑛𝑛𝑛 transition matrix, there exists a vector 𝑣𝑣 such that 𝑃𝑃𝑃𝑃 = 𝑣𝑣.  If 𝑥𝑥 is a distribution vector, 

then lim
𝑛𝑛→∞

𝑃𝑃𝑛𝑛𝑥𝑥 = 𝑣𝑣 (Abbott 164).  Therefore, 𝑥𝑥𝑛𝑛 = �
2
3
1
3

� for all 𝑛𝑛 ≥ 2.  This concept is vital in 

later methods to obtain the probabilities for Monopoly.  

 This process of diagonalization of the probability matrix works well only for small 

matrices, however, for a 4-space board, we run into some problems.  The eigenvalues have an 

imaginary part, which makes it much more difficult to raise to a power and calculate 𝑥𝑥𝑛𝑛.  In 

Mathematica, we can use numerical evaluation to the 3rd significant digit to work the complex 

part of these eigenvalues and eigenvectors into the value.  Let us set up another example, 

specifically the 4-space board.  Let there be a square split into four parts.  

There are 4 states: state 1 is Jail, state 2 is Policeman, state 3 is 

Community Chest, and state 4 is Go.  Now, we will have three matrices 

that we want to multiply together.  Let 𝑅𝑅 be the transition matrix 

representing movement using a two-sided coin.  Let 𝐽𝐽 be the Jail transition 

matrix and let 𝐶𝐶𝐶𝐶 be the Community Chest transition matrix.  Thus, 
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𝑅𝑅 =

⎣
⎢
⎢
⎢
⎢
⎡0 0 1

2
1
2

1
2

0 0 1
2

1
2

1
2

0 0

0 1
2

1
2

0⎦
⎥
⎥
⎥
⎥
⎤

. 

This means that there is a 50% chance of moving to Policeman or Community Chest when 

starting in Jail.  This matrix forgoes the rule that Policeman sends you to Jail.  This rule is 

represented in the Jail matrix, being  

𝐽𝐽 = �

1 1 0 0
0 0 0 0
0 0 1 0
0 0 0 1

�. 

The second column represents that when you land on Policeman, being state 2, you head straight 

to Jail, being state 1.  The next matrix is the Community Chest matrix.  Community Chest has 16 

cards, two of which are included in this scenario.  These cards are the one “Go to Jail” card and 

the one “Advance to Go” card.  These are represented in this matrix,  

𝐶𝐶𝐶𝐶 =

⎣
⎢
⎢
⎢
⎢
⎡1 0 1

16
0

0 1 0 0
0 0 14

16
0

0 0 1
16

1⎦
⎥
⎥
⎥
⎥
⎤

. 

 Now, we can use the same process above to solve for the probabilities in this scenario.  

We want to create one transition matrix though, so to do this, we will multiply the three above 

matrices together.  Now, matrix multiplication is not commutative except when the matrices 

being multiplied are diagonalizable.  This means that there exists a matrix 𝑄𝑄 such that for a 

matrix 𝐴𝐴, 𝑄𝑄−1𝐴𝐴𝐴𝐴 is a diagonal matrix.  The order of multiplication needs to represent what the 

player does.  Since this example follows Abbott’s 4-space example, the movement matrix is last 
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because his matrices are transposes of mine.  This means that while my state i is a row, his 

beginning state i is a column.  This detail is a small difference between our methods, but both 

obtain accurate results.  Normally, the player would first roll the dice to move, so the movement 

matrix would be first.  Nevertheless, first we multiply the Community Chest and Jail Matrix.  

Now, note that (𝐶𝐶𝐶𝐶). (𝐽𝐽) = (𝐽𝐽). (𝐶𝐶𝐶𝐶), so the order of Jail or Community Chest first does not 

matter.  Then we multiply the movement matrix 𝑅𝑅 last.  Thus, the order of multiplication would 

be  

(𝐶𝐶𝐶𝐶). (𝐽𝐽). (𝑅𝑅) =

⎣
⎢
⎢
⎢
⎢
⎡
17
32

1
32

1
2

1
0 0 0 0
7
16

7
16

0 0
1
32

17
32

1
2

0⎦
⎥
⎥
⎥
⎥
⎤

. 

This matrix can be used to solve for the probabilities, but it can be made simpler by removing the 

Policeman state as a player never spends a turn on it.  Thus, we can remove the second row and 

column as it has no effect on the final probabilities.  Our new matrix is  

𝐾𝐾 =

⎣
⎢
⎢
⎢
⎡
17
32

1
2

1 
7
16

0 0
1
32

1
2

0 ⎦
⎥
⎥
⎥
⎤
. 

Now, by following the same process that we used for a 3-space scenario, we find that  

𝑥𝑥𝑛𝑛 =

⎣
⎢
⎢
⎢
⎡
16
27
7
27
4
27⎦
⎥
⎥
⎥
⎤
. 

Thus, the probability of landing in Jail is about 0.593, the probability of landing on Community 

Chest is 0.259, and lastly, the probability of landing on Go is 0.148 (Abbott).   
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Since we have worked through the process of calculating these probabilities in simpler 

scenarios, we can now work our way up to Monopoly and the many rules that we need to 

consider.  The rules of Monopoly are important to understanding the models created in this 

paper.  First, players start on Go.  They roll two 6-sided dice in order to move.  If a player lands 

on Chance, they pull a card from the Chance pile.  Once a card is pulled, it is shuffled back into 

the pile.  If a player lands on Community Chest, they pull a card from the Community Chest pile.  

This card also is shuffled back into the deck.  If a player lands on Free Parking, they gain 

nothing.  If a player lands on the Policeman, they go directly to jail.  These rules will be used in 

all models, but rules regarding Jail will be added later.  Since a player will be rolling two dice, 

the probabilities are as follows: 

Value Probability Value Probability 

2 1
36

 
8 5

36
 

3 2
36

 
9 4

36
 

4 3
36

 
10 3

36
 

5 4
36

 
11 2

36
 

6 5
36

 
12 1

36
 

7 6
36

 
  

 

First, we will start with the base of 39 states for a 40𝑥𝑥40 matrix board.  This example is 

most similar to what Roger Bilisoly created in his paper “Using Board Games and Mathematica 

to Teach Fundamentals of Finite Stationary Markov Chains” as he had 39 states and did not 

include the rules regarding Jail.  However, my model is slightly different than his as he used 



Betz 9 
 

Mathematica code to create his matrices and find the eigenvalues.  In this examination of the 

game Monopoly, assume Go is state 0 and Boardwalk is state 39.  First, we will focus on the 

movement matrix.  Each row contains this pattern of probabilities.  For example, at state 0, the 

row is:  

(0 0
1

36
    

2
36

3
36

4
36

     5
36

6
36

5
36

     
4

36
3

36
2

36
     

1
36

0 0   ⋯    0 0) 

This means that when a player starts on Go, they have zero chance to move back to go as they 

must move forward.  They also have zero chance going one space forward as it is impossible to 

roll a 1 on two 6-sided dice.  However, a player has a 1
36

 chance of moving two spaces forward, 

being snake eyes.  Every row of the movement matrix has this pattern, just at a different location 

depending on the space.  The pattern moves one space over each row and wraps back around to 

the beginning at the 28th state.  Similarly to our analysis of the 4-space board, we assume that you 

can land and move from Policeman or state 30.   

 Now we will create the Jail matrix. For this matrix, the diagonal is filled with ones except 

for in the 30th state, where the one is placed in the 10th state (shown below): 

(0 0 0    0 0 0     0 0 0     0 1 0     0 0 0   ⋯    0 0) 

This format means that if you are on Go, you will stay on Go because you cannot possibly go to 

Jail from that point.  This matrix ultimately represents spaces on the board that send you to Jail 

just by landing on said space.  Community Chest and Chance are not included in this because by 

landing on those spaces, you will not be sent to Jail immediately and with 100% certainty. 

 The next matrix would be the Community Chest matrix.  Community Chest has 16 cards, 

two of which send you to either Go or to Jail.  Thus, the matrix has ones in the diagonal, except 
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in the 3rd, 18th, and 34th row.  These rows have 14
16

 in the diagonal and 1
16

 in the 0 and 10th state.  

An example of this is shown below, pulled from the 2nd state of this matrix:  

( 1
16

0 14
16    0 0 0     0 0 0     0 1

16
0     0 0 0   ⋯    0 0). 

Lastly, we will create a 40𝑥𝑥40 Chance matrix.  Chance has many more cards that will send the 

player to a different space.  The probabilities are as follows: 

Card Probability 

Advance to Go 1/16 

Go back 3 Spaces 1/16 

Take a Trip to Reading Railroad 1/16 

Advance to the nearest Railroad 2/16 

Go Directly to Jail 1/16 

Advance to St. Charles 1/16 

Advance to the Nearest Utility 1/16 

Advance to Illinois Ave 1/16 

Advance to Boardwalk 1/16 

Thus, each Chance has a slightly different format based on location.  For example, the first 

Chance located in the 7th state is shown below: 

(
1

16
0 0    0

1
16

3
16

     0
6

16
0     0

1
16

1
16

     
1

16
0 0     0 0 0     0 0 0     0 0 0     1/16 0 0   ⋯    0

1
16

) 

This can be interpreted as there is a 1
16

 chance of going back to Go, 1
16

 chance of moving back 

three spaces, 3
16

 chance of moving to Reading Railroad, and so on following the chart of Chance 

probabilities.  Each row is slightly different based on location as some cards say to go to the 

nearest railroad or utility, meaning that the location of Chance will change which space has a 
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probability of being landed on.  For example, the first chance at the 7th space has a 3
16

 probability 

of moving to Reading Railroad because there are two cards that say move to the nearest railroad 

and one that says to move to Reading Railroad. 

 Now that we have created these matrices, it is time to consider how they are being 

multiplied and the results obtained.  Since matrix multiplication is not commutative, then we first 

need to consider which matrix is acted on first.  The player would first roll their dice and thus, 

the movement matrix must be multiplied first.  The next matrix being multiplied depends on 

where a player lands.  As such, the order of the Jail, Community Chest, and Chance does not 

matter.  This fact holds for all models I created.  While our process outlined above works for 

small matrices, I discovered that this process failed for larger ones.  My computer could produce 

the 40𝑥𝑥40 matrix’s eigenvalues, but it was very difficult to generate the eigenvectors.  Because 

the eigenvalues were larger than the smaller models, calculating the eigenvectors through 

Mathematica was much more time consuming.  My computer could not complete this process, so 

I worked to find a new process to approximate these probabilities. 

 By raising a matrix to a large power, we approximate the long-term probabilities instead 

of the exact values through diagonalization.  Thus, we can raise a matrix to a larger power, such 

as 100, and multiply it by a state vector with the same number of columns to obtain these 

probabilities. For this 40𝑥𝑥40 matrix, we multiply (𝑇𝑇). (𝐽𝐽). (𝐶𝐶ℎ). (𝐶𝐶𝐶𝐶) and raise it to the 100th 

power.  Then we multiply it by the state vector, a 40 column and 1 row vector with 1 in the first 

column.  In order to get readable output from Mathematica, we round the probabilities we obtain 

to the three significant digits, which made the calculation process and analysis easier.  Therefore, 

we can evaluate numerically in Mathematica to obtain these probabilities:  
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{{0.0314, 0.0218, 0.0194, 0.0222, 0.0239, 0.0303, 0.0232, 0.00887, 0.0237, 0.0236, 0.0590, 

0.0277, 0.0252, 0.0241, 0.0249, 0.0264, 0.0279, 0.0257, 0.0290, 0.0304, 0.0284, 0.0279, 0.0103, 

0.0270, 0.0315, 0.0302, 0.0267, 0.0265, 0.0292, 0.0256, 0, 0.0266, 0.0261, 0.0236, 0.0250, 

0.0273, 0.00869, 0.0220, 0.0220, 0.0266}} 

The first value of 0.0314 is the proportion of time spent on Go, the next is the probability of 

landing on Mediterranean Avenue.  The value I want to bring your attention to, however, is that 

of the Jail probability, being 0.0590.  This means in this model of Monopoly, the player has a 

5.9% chance of going to Jail.  This makes sense as there are many different ways to get to Jail: 

by landing on it, by pulling a card from Chance or Community Chest, or landing on the 

Policeman.  These probabilities are similar to those that Roger Bilisoly obtained.  I believe the 

difference between them is simply different rounding between these models.  This is the 

beginning of modeling the game Monopoly in order to discover which spots are landed on the 

most.   

 In the 40𝑥𝑥40 matrix model, we did not consider some rules of the game that are normally 

included.  For sake of simplicity, some papers, like Roger Bilisoly’s, did not include the rules 

regarding Jail, being that by rolling three doubles in a row the player goes to Jail and that if the 

player rolls a double while in Jail, they are let out.  However, these rules affect the probabilities 

of spaces being landed on.  Thus, the next model I created was a 41𝑥𝑥41 matrix, where state 10 

was visiting Jail and state 41 was Incarcerated in Jail.  This model is similar to the previous one, 

each matrix is the same except they have another row and column.  For the movement matrix, 

the 41st column is filled with zeros as it is impossible to move from a space on the board to 

Incarcerated in Jail with the rules we have included in this model.  We exclude the rule regarding 

going to Jail after rolling three doubles but will consider it in a later model.  However, we 
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assume that a player must leave Jail after the first turn in Jail.  Thus, a player must leave Jail the 

following turn after they are incarcerated.  The below figure represents our new movement 

matrix including this assumption about leaving Jail: 

⎝

⎜
⎜
⎛

0 0 1
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36

0 0 0 0 0 0 0 0 0 0 ⋯ 0

0 0 0 1
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36

0 0 0 0 0 0 0 0 0 ⋯ 0
⋮

0

⋮

0

⋮

0

⋮

0

⋮

0

⋮

0

⋮

0

⋮

0

⋮

0

⋮

0

⋮

0

⋮

0

⋮
1
36

⋮
2
36

⋮
3
36

⋮
4
36

⋮
5
36

⋮
6
36

⋮
5
36

⋮
4
36

 ⋮    ⋮     ⋮  ⋱ 0
3
36

2
36

1
36 ⋯ 0⎠

⎟
⎟
⎞

. 

The Jail, Community Chest, and Chance matrix in this model are similar to that of the 40𝑥𝑥40 

model.  For the Jail Matrix, the row representing the policeman has a one in the last column, 

representing Incarcerated in Jail.  Likewise, the Chance and Community Chest matrices are the 

same except the 1
16

 chance to go to Jail in now in the last column of the matrices in their 

respective rows.  Now, we will multiply these together, raise it to a power, and then multiply it 

by the state vector.  Thus, our equation is 𝑃𝑃 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆. (𝑇𝑇. 𝐽𝐽.𝐶𝐶ℎ.𝐶𝐶𝑐𝑐)100.  The resulting 

probabilities as calculated in Mathematica are displayed below: 

{{0.0314, 0.0218, 0.0194, 0.0222, 0.0239, 0.0303, 0.0232, 0.00887, 0.0237, 0.0236, 0.0233, 

0.0277, 0.0252, 0.0241, 0.0249, 0.0264, 0.0279, 0.0257, 0.0290, 0.0304, 0.0284, 0.0279, 0.0103, 

0.0270, 0.0315, 0.0302, 0.0267, 0.0265, 0.0292, 0.0256, 0, 0.0266, 0.0261, 0.0236, 0.0250, 

0.0273, 0.00869, 0.0220, 0.0220, 0.0266, 0.0357}} 

The first value is the proportion of time spent on Go, the next is the probability of landing on 

Mediterranean Avenue, and so on.  These probabilities are the same as those created by 

the 40𝑥𝑥40 model.  The only difference between those two is that the Jail probability we obtained 

from the 40𝑥𝑥40 model is now split in this model.  By adding the bolded values, we obtain the 

frequency of landing on Jail in Monopoly, being 0.0233 + 0.0357 = 0.0590.  This value 
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matches with the probability from the 40𝑥𝑥40 model.  This makes sense as we did not add any 

rules in the 41𝑥𝑥41 model that would affect how often any one space is landed on compared to 

the 40𝑥𝑥40 model.  Because of this result, we now want to examine Monopoly with more rules 

and more states.  

 Now with both models completed, I decided to examine a 43𝑥𝑥43 model with more rules 

included.  Recall that the states in this model are state 0 is Go, state 1 is Mediterranean Ave, ..., 

state 10 is Visiting Jail, ..., state 39 is Boardwalk, state 40 is Behind Bars, state 41 is First Turn 

in Jail (No doubles rolled), and state 42 is Second Turn in Jail (No doubles rolled).  Using this 

model, we include rules that the paper “Using Board Games and Mathematica to Teach the 

Fundamentals of Finite Stationary Markov Chains” by Roger Bilisoly did not.  First, we will 

assume that after rolling three doubles in a row, a player will be behind bars.  Secondly, if a 

player rolls doubles, they must leave Jail and travel the amount of spaces which they rolled.  

Lastly, on a player’s third turn, they will be forced to pay the fine of $50 and leave jail.  In the 

following pages, I will outline how each matrix is set up.  I will include a copy of each matrix in 

the Appendix.  

First, we will examine the movement matrix.  The first 40 rows by 40 columns are the 

same as the movement matrix used in the 40𝑥𝑥40 model.  Recall the following probability table: 

Value Probability Value Probability 

2 1
36

 
8 5

36
 

3 2
36

 
9 4

36
 

4 3
36

 
10 3

36
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5 4
36

 
11 2

36
 

6 5
36

 
12 1

36
 

7 6
36

 
  

Each row contains these probabilities and they are located two spaces from the diagonal in each 

row, meaning in state 10, the probability of rolling a two is located in the 13th column.  Once the 

matrix reaches the lower part of the board, these values begin to wrap back around to the 

beginning of the row.  Thus, in state 37, there is a 2
36

 chance of landing on Go from Park Place.  

The whole matrix is located in the Appendix.  

The last three states model the rules of exiting Jail.  In state 40 and 41, a player has a 1
36

 

chance of rolling doubles of any one value.  The rules of Monopoly state that if a player in Jail 

rolls a double, they must exit Jail and move forward the number of spaces that they rolled.  Thus, 

if a player rolls doubles, they will move from state 10, being Visiting Jail.  This is due to the fact 

that while this model has added states for behind bars, rolling doubles and getting out of jail 

would move the player forward from the space that Jail is located.  Since Visiting Jail is state 10, 

then if a player rolls doubles, they move from that state, as shown below: 

Spaces from Jail 0 1 2 3 4 5 6 7 8 9 10 11 12 

Probability of 
Leaving after the 
First Turn in Jail 

0 0 1
36

 
0 1

36
 

0 1
36

 
0 1

36
 

0 1
36

 
0 1

36
 

Probability of 
Leaving after the 
Second Turn in Jail 

0 0 1
36

 
0 1

36
 

0 1
36

 
0 1

36
 

0 1
36

 
0 1

36
 

The player has a 30
36

 chance of staying behind bars, meaning that the probability of going from 

state 40 to state 41 is 30
36

.  This is because state 40 is when the player is behind bars and if the 
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player does not roll doubles, then they go into their first turn behind bars meaning they move into 

state 41.  Similarly, the probability of going from state 41 to state 42 is also 30
36

 by the same 

reason.  Now, on the players third turn in Jail, they must pay the fine and leave.  As such, the 

players will move from state 10 with the probabilities from rolling two dice, similarly to the 

pattern from the rest of the matrix.  Thus, the probabilities of moving from state 42 to the rest of 

the board is as follows: 

(0 0 0 0 0 0 0 0 0 0 0 0 0
1

36
2

36
3

36
4

36
5

36
6

36
5

36
4

36
3

36
2

36
1

36 0 ⋯ 0) 

This describes the 43𝑥𝑥43 movement matrix, Figure 2 in the Appendix, modeling the rules of 

exiting Jail in Monopoly. 

 Next, we shall work through the Jail matrix.  Due to the addition of two new states and 

the rule of rolling doubles, this matrix has become more complex.  Since the probability of 

rolling a double is 6
36

, the probability of rolling three doubles in a row is ( 6
36

)3.  This is because 

the probability of rolling a double does not change if you already rolled one, meaning it is 

independent.  Then, we obtain that the chance of rolling three doubles in a row is � 6
36
�
3

= 1
6
∗ 1
6
∗

1
6

= 1
216

.  Recall in the Jail matrix for the 40𝑥𝑥40 model, the diagonal was filled with ones except 

on state 30 which is the Policeman space.  This 43𝑥𝑥43 matrix is similar, except that the 

probability of staying in each state is 215
216

 and the probability of going to state 40, or behind bars, 

is 1
216

.  We assume that at any point on the board, a player can go to Jail due to the double rule.  

The exception to this format is state 30, where a player will go to state 40 with 100% certainty.  

Also, if a player is in state 40, 41, or 42, they will stay in that state.  Thus, we have formatted a 

Jail matrix with the rule of rolling doubles three times.  It should be noted that this method only 
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addresses the rules of doubles in regards to the Jail space rather than all the spaces, but it does 

create accurate probabilites for our end result. 

 The next matrix we will model will be the Community Chest matrix.  This matrix is by 

far the easiest out of the four.  This matrix has ones down the diagonal except in states 2, 17, and 

33 where the diagonal is 14
16

.  This is because there are 14 cards in Community Chest that will not 

move the player, and there are two that do- one being “Advance to Go” and the other being “Go 

to Jail.”  These cards will send a player to state 0 and state 40 respectively.  Therefore, we have 

created the Community Chest matrix as shown by Figure 4 in the Appendix.  

 The Chance matrix for this 43𝑥𝑥43 model, Figure 5 in the Appendix, is similar to that 

which we already worked through in the 40𝑥𝑥40 model.  The only difference with this matrix is 

that there is a 1
16

 chance the player ends up behind bars, which is state 40, by the “Go to Jail” 

card.  Even though state 41 and 42 are also technically Jail states, the player cannot enter these 

states through the Chance matrix as these states are after a player has spent a turn in Jail.  I have 

included these matrices in the Appendix in order to clear up any confusion.   

 Finally, we can calculate the probabilities of landing on Monopoly spaces.  With these 

matrices, we will first multiply them together.  This is done the same way as the 40x40 model, 

where we will first multiply the movement matrix by the Jail matrix.  Then we multiply by the 

Chance matrix and Community Chest matrix in that order.  By following the new process to 

approximate diagonalization, we will raise this product to the power of 100 and then multiply it 

by the state vector as shown below:  

(1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)

. 
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To obtain these probabilities, we use the equation 𝑃𝑃 = 𝑥𝑥0. (𝑇𝑇. 𝐽𝐽.𝐶𝐶ℎ.𝐶𝐶𝐶𝐶)100 where 𝑥𝑥0 is the State 

vector.  Therefore, our probabilites are: 

State Space Name Probability (%) 

0 Go 2.93 

1 Mediterranean Ave 2.03 

2 Community Chest 1.80 

3 Baltic Ave 2.07 

4 Income Tax 2.22 

5 Reading Railroad 2.83 

6 Oriental Ave 2.15 

7 Chance .824 

8 Vermont Ave 2.20 

9 Connecticut Ave 2.19 

10 Visiting Jail 2.16 

11 St. Charles Place 2.58 

12 Electric Company 2.50 

13 States Ave 2.20 

14 Virginia Ave 2.44 

15 Pennsylvania 
Railroad 

2.38 

16 St. James Place 2.69 

17 Community Chest 2.30 

18 Tennessee Ave 2.81 

19 New York Ave 2.78 

20 Free Parking 2.80 

21 Kentucky Ave 2.57 

State Space Name Probability (%) 

22 Chance 1.03 

23 Indiana Ave 2.52 

24 Illinois Ave 2.95 

25 B. & O. Railroad 2.85 

26 Atlantic Ave  2.50 

27 Ventnor Ave 2.48 

28 Water Works 2.76 

29 Marvin Gardens 2.40 

30 Policeman 0 

31 Pacific Ave 2.49 

32 North Carolina Ave 2.45 

33 Community Chest 2.21 

34 Pennsylvania Ave 2.34 

35 Short Line 2.55 

36 Chance .813 

37 Park Place 2.06 

38 Luxury Tax 2.05 

39 Boardwalk 2.49 

40 Behind Bars 3.78 

41 Behind Bars 

(First Turn) 

3.15 

42 Behind Bars 

(Second Turn) 

2.63 
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This chart represents the probability a player will land on a specific property.  In this 

model I have created, we have another Jail state compared to “Take a Walk on Boardwalk” by 

Stephen Abbott and Matt Richey.  Our calculated data states that there is a 11.72% chance that 

the player will end up in Jail, whether that be visiting Jail or behind bars.  This is the same 

probability as Abbott’s article.  Since I added the third Jail state, this probability should be 

larger.  I believe the cause of this result is most likely due to the rounding.  When we try more 

decimal places, we obtain the following probabilities: 

{{0.029282, 0.020336, 0.018038, 0.020709, 0.022225, 0.028306, 0.021539, 0.0082409, 

0.022035, 0.021903, 0.021608, 0.025784, 0.025033, 0.021976, 0.024440, 0.023781, 0.026915, 

0.022952, 0.028095, 0.027826, 0.027956, 0.025745, 0.010275, 0.025222, 0.029522, 0.028507, 

0.025037, 0.024850, 0.027551, 0.024040, 0, 0.024931, 0.024473, 0.022095, 0.023387, 0.025534, 

0.0081264, 0.020590, 0.020550, 0.024929, 0.037842, 0.031535, 0.026279}}. 

By rounding to the 5th significant digit, the probability a player will land on the Jail space is 

11.7559%.  Thus, by adding another Jail state, our probability of landing on Jail has increased 

compared to the result obtained by Abbott.   

In Abbott’s article, which contained the data that I used as a comparison point to my 

results, the next most landed on property was Illinois Avenue, which matches with my findings.  

This relates back to the fact that many say that the red properties are good to own.  However, 

Illinois is the only red with that high of a probability as Indiana and Kentucky are in the top 15, 

being number 14 and 12 respectively. Curiously, the orange properties, which are approximately 

7 spaces away from Jail (an average value for 2 die), were landed on less than Illinois Avenue.  

However, players have a higher probability of landing on the orange properties than that of the 

other two reds.  Since the probability of a player being in Jail is highest, it makes sense then that 
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some of the most landed on properties would be the average roll of two dice, being the orange 

properties.   For reference, a chart with the probabilities in ascending order is given by Figure 6 

in the Appendix.  

Another longer and more accurate way of modeling Monopoly is by taking each space 

and dividing it up into three parts.  For the spaces other than Jail, the three states are reached 

without doubles, reached with one throw of doubles, and reached with two throws of doubles.  

The three states in Jail were the three chances to get out of Jail by rolling doubles.  Thus, there 

are 120 states and a 120𝑥𝑥120 matrix to solve for (Bewersdorff).  This method is complex, and I 

do not believe my computer could handle it. 

Further research into this topic could consist of using these probabilities to calculate the 

average game time in turns and figuring out which properties have the highest expected value.  

While Jorg Bewersdorff’s analysis of Monopoly in Luck, Logic, and White Lies: The 

Mathematics of Games does calculate the probabilities and expected return, I would like to 

explore the expected value based on my probability results.  From my results, I discovered that 

Jail is by far the most landed on, with the red property of Illinois Ave coming up second.  This 

further proves that the red properties are a good place to have a monopoly on and that Park Place 

and Boardwalk might have a high rental cost, but the odds of landing on it are not in your favor.  

Sometimes the most dangerous player is the one with the most unassuming properties.  

Board games are a fun night of strategy and goodhearted competitiveness, unless it’s 

Monopoly of course.  Many fail to realize just how based in mathematics the games we play are.  

Board games have many different variables that affect the outcome of the game.  The random 

chance from rolling the dice and the choice of how to play the game to the player’s benefit all 

have a strong base in mathematics.  Many board games can be disassembled and evaluated in 
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terms of numbers and calculations.  In order to further the knowledge of the masses regarding the 

board game’s foundation in mathematics, this thesis analyzed simple games, brought about 

understanding to sample mathematical scenarios, and further explored Monopoly.  

Understanding simple games helps to best understand larger and more complex models, like how 

understanding the method of the 3-space and 4-space scenario helped to develop a way to create 

a 43𝑥𝑥43 model.  By focusing on Monopoly and calculating the probabilities with the more 

complex rules, like exiting Jail and doubles, the most probable space a player will land on and 

the best choices in order to win are found.  Overall, this thesis further expanded the knowledge 

of Monopoly in the mathematical world and helped to open the eyes of those who lacked the 

knowledge regarding the connection of math and board games.  Just remember, using this 

information is not cheating, so go out, go directly to Jail, and win.  
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Figure 1: Monopoly Board 

Figure 2: 43x43 Movement Matrix 
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Figure 3: 43x43 Jail Matrix 

Figure 4: 43x43 Community Chest Matrix 
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Figure 5: 43x43 Chance Matrix 
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State Space Name Probability (%) 

30 Policeman 0 

36 Chance .813 

7 Chance .824 

22 Chance 1.03 

2 Community Chest 1.80 

1 Mediterranean Ave 2.03 

38 Luxury Tax 2.05 

37 Park Place 2.06 

3 Baltic Ave 2.07 

6 Oriental Ave 2.15 

10 Visiting Jail 2.16 

9 Connecticut Ave 2.19 

8 Vermont Ave 2.20 

13 States Ave 2.20 

33 Community Chest 2.21 

4 Income Tax 2.22 

17 Community Chest 2.30 

34 Pennsylvania Ave 2.34 

15 Pennsylvania 
Railroad 

2.38 

29 Marvin Gardens 2.40 

14 Virginia Ave 2.44 

32 North Carolina Ave 2.45 

27 Ventnor Ave 2.48 

31 Pacific Ave 2.49 

39 Boardwalk 2.49 

12 Electric Company 2.50 

26 Atlantic Ave  2.50 

23 Indiana Ave 2.52 

35 Short Line 2.55 

21 Kentucky Ave 2.57 

11 St. Charles Place 2.58 

42 Behind Bars 

(Second Turn) 

2.63 

16 St. James Place 2.69 

28 Water Works 2.76 

19 New York Ave 2.78 

20 Free Parking 2.80 

18 Tennessee Ave 2.81 

5 Reading Railroad 2.83 

25 B. & O. Railroad 2.85 

0 Go 2.93 

24 Illinois Ave 2.95 

41 Behind Bars 

(First Turn) 

3.15 

40 Behind Bars 3.78 

Figure 6: Final Probabilities in Decreasing Order 
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