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Abstract: Throughout the study of mathematics, one will find that it is divided into many different 

subjects of study. Frequently, one will see that these subjects overlap and cover the same material, which 

is both exciting and useful. No more so is this overlapping effect seen, than in the study of minimal 

surfaces and soap films. Within this area of study: complex analysis, differential geometry, physics, and 

multivariable calculus converge together to bring upon the study of minimal surfaces, their connection to 

soap films, and finally their parameterizations through the Weierstrass-Enneper representation. Through 

the course of this paper we will discover a link between differential geometry and complex analysis by 

studying isothermal coordinates, harmonic and analytic functions, and their motivation towards the 

Weierstrass-Enneper representation. Furthermore, the link between minimal surfaces and surfaces that 

minimize area will also be made with regards to soap films.   

Introduction 

To begin, I would like to first describe what a minimal surface is as well as the different types that are 

studied. Throughout this paper the surfaces that will be studied will be in   . Minimal surfaces minimize 

area locally, and can be thought of as surfaces where at each point on the surface the bending of the 

surface upwards is matched by the bending of the surface downwards in the orthogonal direction. This 

bending is described by curvature, which we will define later. There are two types of minimal surfaces 

that we will discuss in this paper: complete and embedded. A complete minimal surface is boundaryless 

and an embedded minimal surface has no self-intersections. Examples of complete embedded minimal 

surfaces are the plane, catenoid, helicoid, and Scherk’s doubly periodic surface.  

Section 1: Differential Geometry 

We will first review material from differential geometry, beginning with parameterizations of surfaces in 

  .  

1.1 Parameterizations 

Every point on a surface in   can be represented as an ordered-triple,             It can also be 

represented by two parameters. This can be done by letting   be an open set in   , in which case the 

surface   can be represented by the function                                  where        

and   is the image of     . It is important to note that   must be differentiable. This implies that every 

        has a continuous partial derivative of every order in the open set  . If these properties are 

sufficed, then we have a parameterization     

 



 

Parameterization of Surface [Dor110] 

A very important concept to understand is that when we are dealing with a function of one variable, 

      , we want it to satisfy the horizontal line test. Furthermore,      is a one-dimensional object in 

  , and it is parameterized by the mapping of            which takes     . This idea can be taken 

one dimension higher for a function of two variables,         . Now,       is two-dimensional and   

satisfies the vertical line test where it is parallel to the z-axis. Going further, the graph of          is a 

two-dimensional surface in    where its height is   at the point       [Dor113]. 

1.2 Tangent Planes and Normal Vectors  

Let        be a parameterization of the surface     , then if      is fixed and   is allowed to vary, 

then         only depends on a single parameter. This is defined as a  -parameter curve. Likewise, if 

     is fixed and   is allowed to vary, then we have a  -parameter curve.  

Now we can define tangent vectors for our    -parameter curves. These are given by

    
   

  
 
   

  
 
   

  
      

   

  
 
   

  
 
   

  
  

and for any point             on the surface  , there will be two vectors             and            . For 

any parameterization we will require that    and    are linearly independent, which results in the span of 

these two vectors giving us a plane. This plane is defined as the tangent plane. Note that    and    are 

linearly independent if and only if their cross product is zero.  

 

 -parameter curve and   -parameter curve [Dor115] 

 



 

Definition 1.2.1: The unit normal vector to a surface   at the point   =        is defined by  

               

        
 
     

 

A surface that does not have a well-defined unit normal over the whole surface is called a non-orientable 

surface. An example of this is the Mobius strip.  

 

The unit normal of a surface [Dor116] 

If the surface   is an orientable surface, then there are two unit normal vectors, one that points inward 

and one outward, for any point      

1.3 Curvature  

Any plane that contains    must intersect the surface in a curve called  . This curve is very special to our 

study of minimal surfaces as it allows us to measure curvature. Curvature is the measure of how this 

curve bends away from the tangent plane at the point  .  

A curve in   can be parameterized by a single variable function,      where           . However, 

this parameterization is not unique to the function. For example, the unit circle can be parameterized by 

both,                    and                   .  We can simplify our parameterizations by 

requiring that they be of unit speed. A curve is of unit speed if        =1,   . If      is regular or 

smooth, (i.e.                      but not of unit speed, then we can first parameterize the curve by arc 

length to have a curve of unit speed.  

Essentially, curvature is the rate of change of the tangent vector at  . Hence, what we are really 

concerned in knowing is     the rate at which the tangent vectors vary. So, the curvature of a unit speed 

curve is given by, 
 

  
             . 

1.4 Normal and Mean Curvature 

Now that we have an understanding of normal and tangent vectors as well as the notion of curvature, we 

can work towards a definition for normal and mean curvature. As we will soon see, mean curvature lies at 

the foundation of the study of minimal surfaces. Both normal and mean curvature will also be vital in 

defining the first and second fundamental forms.  



Suppose that we are given a curve      on a surface  . In which case, we can compute the tangent vector 

      of the curve      at the point    . Likewise,          will create the plane   where the intersection of 

the plane with the surface will be the curve     , as shown below.  

 

Normal Curvature [Dor122] 

Definition 1.4.1: The normal curvature in the       direction is defined by  

                     

We can then conclude that the normal curvature is essentially the measure of how much   bends towards 

the unit normal vector as you approach   in the direction of the tangent vector. Furthering this idea, by 

rotating the plane about the unit normal vector, this will result in a set of curves, each of which has their 

own respective curvature. Hence, each direction with have its own normal curvature and tangent vector.  

Denote    and    as the maximum and the minimum normal curvatures of the set curves at the point  . 

These are called the principal curvatures. Furthermore, these principle curvatures define the directions 

in which the normal curvature attains both its absolute maximum and absolute minimum value, which are 

called the principal directions.   

Definition 1.4.2: The mean curvature, denoted  , of a surface   at the point   is given by  

  
     

 
 

where    and    are the principle curvatures.  

It is important to notice that when     , this corresponds to a bending towards the unit normal vector, 

while     , results in a bending away from the unit normal vector.  

1.5 The First and Second Fundamental Forms 

In order to discuss a definition for a minimal surface in terms of its mean curvature we need to be able to 

compute   at every point   on the surface   explicitly, rather than being plagued with computing the 

principle curvatures at every single point.  

In order to define an explicit formula for mean curvature, consider a curve   which is of unit speed. In 

which case we have,   



                

                                     

                                                              

                                             
                   

  

                                                        (First Fundamental Form) 

where                 , and        . We call       the coefficients of the first 

fundamental form.  

Next, we will derive the second fundamental form using the definition of the normal curvature for the 

curve  . Since      ,         . Hence, taking the derivative on both sides gives,  

                               

                            

Similarly, we also have that                                                . Using the 
previous equivalence and the definition for the normal curvature of the curve, we have  

                   

                    

                                      
                                                              

  

                                               

                               (Second Fundamental Form)  

where         ,          , and         . Similarly, to the coefficients of the first fundamental 
form, these are called the coefficients of the second fundamental form. They represent the amount in 

which the surface is bending away from the tangent plane [Dor124].  

Section 2: Minimal Surfaces 

2.1 The Minimal Surface Equations 

In the introduction we said that the curvature bending upwards on a minimal surface was matched by 

curvature bending downwards in the orthogonal direction. Essentially, these curvatures cancel each other 

out, resulting in our mean curvature,      This suggests the following definition.  

Definition 2.1.1: A surface   is a minimal surface if     for every point      

However, the problem of calculating the curvature at every point arises. We can use the coefficients of the 

first and second fundamental forms in order to develop an equation for    Setting   equal to zero will 

determine when our surface of study is indeed a minimal surface. Following the derivation of the formula 

for   in terms of the coefficients of the first and second fundamental forms, we will use the Monge patch 



to derive the Minimal Surface Equation. A Monge patch is a parameterization of a graph, which is a 

function of the two variables   and  , where it is parameterized by                    . 

We will first prove the following theorem.   

Theorem 2.1.2:   
         

        
.   

Proof: We will follow the approach taken by [Opr40].  

Let          and           be two orthogonal unit vectors tangent to the surface where    and    are their normal 

curvatures. Now using the curves,                     and                    , and also letting 

            and            .  

Now using the second fundamental form and also plugging    and    we have,  

                                   

                  
                

       
                

  

       
     

                          
     

   

                                                      

Next we want to eliminate    and    from the equation. This will allow us to move closer to having a 

formula for   in terms of our fundamental form coefficients. Recall that                   
            and since          and           are perpendicular,                                    

                                                     (Eq. 1) 

Now, 

   
            

 

      
     

                                                            

         
     

            

                                             
               

   
                                                 

               
   

                                  (By Eq. 1) 

                 

 

By the quadratic formula we have that,      
 

 
  

      

 
    and         

 

 
  

      

 
       and,  

          
  

                  
 

 
        (Eq. 2)  

                  
  

 
          (Eq. 3)  

Now, substituting back our original equation,  
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            (Eq. 4) 

Now all that is left to do is to get rid of         from the previous equation. Recall that, 

                            

Hence, using the above equation we have,   

         
     

                          
     

   

                                                                    

                                        
 

 
           

   

 
                  

                       
   

 
         

                        
 

   
   

 

 

      
 

      

Now plugging into Eq. 4 we have 

              
     

                          
     

   

                                                       

                
 

 
   

   

 
             

                                        
 

 
   

   

 
    

 

      

                                         
         

        
                                                                                         

This formula allows us to tell whether a surface is minimal by computing the first and second 

fundamental form coefficients and plugging into the equation. Now that we have a formula for the mean 

curvature in terms of the coefficients of the fundamental form, let’s derive the Minimal Surface Equation. 
This will give a condition when a Monge patch is minimal.  

To do this we will need to consider the Monge patch. Now, we will state the theorem which we seek to 

prove.  

Theorem 2.1.3 (The Minimal Surface Equation): A surface   defined by the parameterization, 

                   , is minimal if and only if         
                    

    . 



Proof: Let          be a function of two variables and its graph is defined by the Monge patch, 

                   . Hence, by computing relevant partial derivatives, the unit normal vector, and all 

of our fundamental form coefficients we have,   

                                              

                                                

   
     

       
 

 

     
    

 
            

             
                              

  

          
   

     
    

 
            

   

     
    

 
          

   

     
    

 
  

Now, from Theorem 2.1.2 we proved that   
         

        
 and by definition 2.1.1 we defined a surface to 

be minimal if    . Hence, 

                   
         

        
 

                                  

     
  

   

     
    

 
      

  
   

     
    

 
      

   

     
    

 

       
       

         
  

   

                                  
     

           
              

      
    

  
      

Whereby, we see that this will be zero when the numerator is equal to zero, and hence we have that a 

surface parameterized by                     will be minimal if and only if   

        
                    

                                                                                                  

Note that the minimal surface equation is  for a minimal surfaces that is described by a function of two 

variables, and that it is not an inclusive formula to tell whether any particular surface is minimal.   

2.2 Minimal Surfaces Parameterizations 

Now that we have established formulas for checking whether a surface is minimal, we can define several 

parameterizations for surfaces that are easily shown to be minimal using the previous two theorems, and 

ones that we will represent via soap films later on in the paper. We will also come to see how these 

parameterizations arise through the use of the Weierstrass-Enneper representation.  

Plane:                

Enneper’s Surface:           
  

 
       

  

 
             

Catenoid:                                    



Helicoid:                                    

Scherk’s doubly periodic surface:                
    

    
   

Scherk’s singly periodic surface:                                            

 

2.3 Isothermal Parameterizations 

So far in our study of minimal surfaces we have seen that a minimal surface defined by a function of two 

variables must satisfy the minimal surface equation given in Theorem 2.1.3. Furthermore, we saw that 

solutions to this second order partial differential equation gave us minimal surfaces. Continuing on, we 

will find that by using what is called an isothermal parameterization, we can simplify our 

parameterizations and move towards the Weierstrass-Enneper representation.  

Definition 2.3.1: An isothermal parameterization is a parameterization        where         

        and             

We saw in Section 1.5 that the coefficients of the first fundamental form describe the distortion of the 

lengths on the surface. Thus, we see that since an isothermal parameterization has     we see that 

     , and since     we see that the distortion of the lengths is of the same factor in orthogonal 

directions.  

An important theorem to note, but one which will not be proven is that every minimal surface in    has 

an isothermal parameterization.  We will soon see how important an isothermal parameterization is in our 

proofs of theorems leading up to the Weierstrass-Enneper representation. But first, we prove the 

following theorem. 

Theorem 2.3.2: Let   be a surface with an isothermal parameterization. Then   is minimal if and only if 

    .  

Proof: Let   be a surface with an isothermal parameterization. Hence,     and    .  

     
         

        
   

      

     
   

     

    
         

Hence, we see that   is minimal if and only if         

 

 

2.4 Complex Analysis and Conjugate Minimal Surfaces 

Now we will introduce concepts from complex analysis. We will discuss conjugate minimal surfaces as 

well as set up the foundations for the Weierstrass-Enneper representation.  

Fundamental to complex analysis is the study of analytic functions.  



Definition 2.4.1: A complex function      is said to be analytic or holomorphic at every point    if 

      
             

 
 exists.  

What this is really requiring is that the complex function is differentiable at every point in the specified 

region. Furthermore, we know that if                     is an analytic function then the Cauchy-

Riemann equations hold. This is stated in the following theorem.  

Theorem 2.4.2: Given an analytic function, the Cauchy-Riemann equations hold, and are given by  

        and          

If the Cauchy-Riemann equations hold, then   and   are called harmonic conjugates. 

The concept of analytic functions will allow us to relate a minimal surface to what is known as its 

conjugate minimal surface.  

Definition 2.4.3: Let   and   be isothermal parameterizations of minimal surfaces such that their 

component functions are pairwise harmonic conjugates, in which case we have 

                         

Then   and   are called conjugate minimal surfaces.   

A very interesting example of conjugate minimal surfaces is the catenoid and the helicoid. In Section 2.2, 

the parameterizations for these two surfaces were given. This relation can easily be shown by starting 

with the parameterization of the catenoid, using the Cauchy-Riemann equations and reverse partial 

differentiate the parameterization until you arrive at the parameterization of the helicoid.  

2.5 Harmonic Functions and Minimal Surfaces 

In the previous section we discussed how complex analysis allowed us to define conjugate minimal 

surfaces through the use of the Cauchy-Riemann equations. In this section, we will discover the link 

between harmonic functions, isothermal parameterizations and the Laplace Operator.  

Definition 2.5.1: The Laplace Operator is given by              

To begin, we will first prove a theorem which defines the necessary and sufficient condition in which a 

surface is minimal as well as see the relationship between the Laplace Operator and the mean curvature 

under an isothermal parameterization. We will also define a harmonic function.  

Definition 2.5.2: A real-valued function        is harmonic if its second-order partial derivatives are 

continuous and              .  

Theorem 2.5.3: If the parameterization   is isothermal, then                     . 

In order to complete this proof we will need to first discuss the Christoffel symbols, which are also 

called the acceleration formulas. When we were discussing the tangent vectors for our    -parameter 

curves, denoted    and   , we saw that since they were linearly independent,          formed a basis for 



the tangent plane. Furthermore, since    is normal to the tangent plane, we quickly see that              

forms a basis for   . Now, the acceleration formulas express the fundamental accelerations:    ,    , 

and     in terms of this basis. Assuming that    , we have that following orthogonal decomposition, 

       
       

        

       
       

        

       
       

        

Now we simply solve for each  . This is done by taking the dot product with respect to the upper index of 

each  , whereby we use the orthogonal properties of the dot product, as well as the definition of the 

second fundamental form coefficients to simplify the expression. After doing so, we have the following 

acceleration formulas,  

    
  

  
   

  

  
       

    
  

  
   

  

  
       

    
   

  
   

  

  
       

We are now in a position to prove Theorem 2.5.3. 

Proof: Assume that the parameterization is isothermal. Hence,     and    . 

                             
  

  
   

  

  
         

   

  
   

  

  
        

                                              

                                        
   

  
               

                                                                  Since if   is isothermal.   

From this we see that for a minimal surface                   which implies that a surface is 

minimal if and only if the Laplacian is equal to 0. We state the following theorem.  

Theorem 2.5.4: A surface with an isothermal parameterization                                  is 

minimal if and only if         and    are harmonic functions.  

Proof: Assume   is a surface with an isothermal parameterization.  

    Assume   is minimal. This implies    . Hence, by the previous theorem we know that  

         . Hence, the coordinate functions of        are harmonic.  

 



    Assume if         and    are harmonic functions. Hence, we know that          . 

Furthermore, we then have that                  . Now, since       and           since 

if it were 0, then the surface would only be a point, which implies that     , which gives us that   is a 

minimal surface.                                                                                                                                                             

As we will soon see, the Weierstrass-Enneper representation gives us the connection between complex 

analysis and minimal surfaces, which we anticipated in the introduction. Moreover, we will see that we 

can construct minimal surfaces by looking at analytic functions in a specific parameterized formula.  

Section 3: The Weierstrass-Enneper Representation 

As we will soon see the Weierstrass-Enneper representation allows us to create minimal surfaces by 

choosing analytic functions. But first we will use complex analysis, in particular analytic and harmonic 

functions, to work towards this representation.  

Let   be a minimal surface with an isothermal parameterization. Now let        be a complex 

coordinate. From complex analysis, we know that        and its conjugate,         can be solved 

for   and  , where we then have,   
    

 
 and   

    

  
. In which case we can then write the 

parameterization is terms of   and    as,  

                                     

Furthermore, we have the following notation,              where, 

   
   

  
 

 

 
 
   

  
  

   

  
  

 

         
      

      
  

 

         
      

      
  

 

    
  

 

 
  

   

  
 
 

  
   

  
 
 

   
   

  

   

  
  

        
   

  
 
  

   

 

        
   

  
 
  

   

 

Now if we denote the complex function                      , we can also define the function   

in terms of    and   . Using the chain rule, we can derive the following formulas, 

  

  
 

 

 
 
  

  
 

  

  
  

 

 
 
  

  
 

  

  
  

  

   
 

 

 
 
  

  
 

  

  
  

 

 
 
  

  
 

  

  
  



We will show the derivation of the first, and leave out the derivation for the second as it follows from the 

first.  

  

  
  

  

  

  

  
   

  

  

  

  
   

 

 
 
  

  
  

  

  
  

 

  
 
  

  
 

  

  
  

 

 
 
  

  
 

  

  
  

 

 
 
  

  
 

  

  
  

This results in the following theorem.  

Theorem 3.1.1: The complex function   is analytic if and only if 
  

   
  . 

Proof:     Assume the complex function   is analytic. 

                       and        

  

   
 

 

 
         

 

 
        

 
 

 
        

 

 
        

   

    Assume 
  

   
  . Hence, we have then that the real and imaginary parts must equal 0.  

 
 

 
           and 

 

 
          

        and        

    is analytic                                                                                                                           

    

This theorem provides us with a very easy test to determine whether our complex function is analytic. It 

tells us that our complex function is analytic if and only if it can be defined only  in terms of       . 

Now we will prove several theorems in a row that will be used as foundations for the Weierstrass-
Enneper representation.  

Theorem 3.1.2:   
 

  
 
  

   
            

Proof:   
 

  
 
  

   
     

 

  
 
  

   
   

 

  
 
  

   
   

           
 

  
 
 

 
         

 

 
          

 

  
 
 

 
         

 

 
          

            
 

 
    

 

 
    

 

 
    

 

 
        

 

 
    

 

 
    

 

 
    

 

 
     

                             

                    



Theorem 3.1.3a: Let   be a surface with parameterization                                  and 

let              The parameterization        is isothermal iff          
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Hence, we see that the parameterization will be isothermal if and only if    ,             .   

 

Theorem 3.1.3b: Let   be a surface with parameterization                                  and 

let              where    
   

  
. If        is isothermal, then   is minimal if and only if each    is 

analytic. [Dor145] 

Proof: Assume        is isothermal. Now by Theorem 2.5.4 we know that for each  ,    is harmonic if 

and only if    is analytic and by the previous two theorems we have, 

        
    

    
 

    

    
   

 

   
 
   

  
     

 

   
        

Which results since an isothermal parameterization is minimal if and only if the Laplacian equals 0. 

Therefore   is analytic.                                                                                                                              

We have been working with the variable   , which is defined in terms of the two variables   and   . In 

order to resolve this problem we can solve    
   

  
 for   , which will give us a representation of a 

single variable. The following derivation is adapted from [Dor145].  

Since    is a function of two variables we have,     
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Similarly, we have for the conjugate,  

                           
   

  
 

      
      

 

 
 
   

  
  

   

  
          

 
 

 
 
   

  
   

   

  
     

   

  
   

   

  
     

Adding the two together we have,  

                                
   

  
   

   

  
       

And by integrating, we have                , but we can ignore the constants since they do not 

affect the geometry of the surface because    only relates to a translation of the image and the 2 scales the 

surface. Therefore we can reduce our coordinate function to            . To bring all of this 

together, if we have the situation where    for         are analytic functions where        and 
         is finite, then the parameterization 

                                           

will define a minimal surface. We now have a method to construct a minimal surface. All we have to do is 

find              such that       . To do this we start with an analytic function  , a meromorphic 

function  , and also require that     is also analytic, then define 

                                         

We can readily check to see that       . 

         
      

      
                                    

Lemma 3.1.4: For any complex-valued functions   and   on any domain, and  

                        , the following are true.  

1)                   

2)                  

Proof: Note that we previously showed that       . Hence,                          

since                  Likewise, for (2) we have,                         

since              .    

 

Theorem 3.1.5: The Weierstrass-Enneper Representation for Minimal Surfaces: If      is analytic 

on a domain  ,      is meromorphic on  , and     is analytic on  , then the parameterization   

                                     where  



                                                 

defines a minimal surface.  

Proof 1: [Sha54] Let                 denote the integral of  . Now note the following, 

             
  

  

  

  
      

since       , which results 
  

  
    

             
  

  

  

  
              

Now by Lemma 3.1.4 we have that        ,   
    

 , and            and            . 

Therefore we have           . This tells us that our parameterization defines a minimal surface.    

 

Example 3.1.6: Weierstrass-Enneper representation for Enneper’s surface 

Let     and    . Then, we have the following parameterization,  

                                            

                  
 

 
              

 

 
                

Now letting        yields  

          
 

 
             

  

 
        

which is the parameterization that we defined for Enneper’s surface in Section 2.2. 

Now suppose that in the Weierstrass-Enneper representation we assume that   is analytic and that its 

inverse function exists. Furthermore, let   be a function variable and define     where        . We 

will also define      
 

  
 and we see that,  

                
 

  
         

So, substituting   with   and     with        we can define the second form of the Weierstrass-Enneper 

representation.  

Theorem 3.1.7: For every analytic function     , a minimal surface is defined by the parameterization 

                                     where  

                                                                      



defines a minimal surface. 

Now we have a method for obtaining a minimal surface, which only requires one analytic function instead 

of two. This representation tells us that any analytic function will result in a minimal surface, but the 

computation of these integrals is not always as simple.  

As we did with the Weierstrass-Enneper representation, we will show the derivation for the 

parameterization of Enneper’s surface using the second form.  

Example 3.1.8: Enneper’s Surface: Let       ,  

                                             

       
 

 
          

 

 
            

Now since   was assumed to be a complex function we have,          , which will yield 
the parameterization from Section 2.2.  

          
 

 
                    

 

 
                      

          
 

 
             

  

 
        

To summarize, we have been studying minimal surfaces, and while doing so want to look at isothermal 

parameterizations in terms of a two-variable real-valued function. We found that this parameterization 

was connected to harmonic functions and resulted in the Laplacian equaling 0. Furthermore, we saw that 

an isothermal parameterization of a harmonic function gave us the required complex analytic functions 

that we needed to construct the Weierstrass-Enneper representation for minimal surfaces. As such, we 

found a connection between differential geometry and complex analysis.  

Section 4: The Connection to Soap Films 

While studying minimal surfaces, one will find that it is sometimes hard to visualize the surfaces. A 

solution to this is soap films, which are physical models of minimal surfaces. This is just as amazing as it 

is unexpected.  

 

Section 4.1: Surface Tension 

The key to soap films is surface tension. Surface tension is the force per length on a liquid, which is 

given by   
 

 
. Within a liquid the molecules exert forces on each other that are of equal strength. The 

deeper the molecules are located within the liquid, the more they feel a force of equal magnitude from 

every direction. However, a molecule near the surface will feel a stronger force from the molecules within 

the liquid than it will from those near the surface. As such, any molecule near the surface will be pulled 



into the liquid, and will result in a curvature along a boundary [Oprea1]. This tautness created within the 

liquid is the surface tension.  

Now using the following theorem we can show that a soap film is a physical model of a minimal surface. 

Theorem 4.1.1: Every soap film is a physical model of a minimal surface. [Oprea13] 

Proof: Consider a small section of a soap film, which is expanded a small increment by an internal 

pressure that has been increased. As shown, in the diagram below. 

  

Now work is defined as the force per distance and surface tension gives a soap film the potential to do 

work, so we see that the amount of work done by expanding the film is,  

                           

where S is the surface area, p is the pressure, and   is the surface tension. Moreover, the amount of work 

is the surface tension times the forces per unit length,     

                   

This gives us the ratio between the original radii of the soap film and the expanded radii,  

    

     
 

 

  
        

    

     
 

 

  
         

In which case    becomes,  

                       
  

  
     

  

  
     

And if we consider a small increment   ,          
 

   
 

 

  
 , and the work becomes, 

                   
 

   
 

 

  
  

    
 

   
 

 

  
  



The equation     
 

   
 

 

  
  is called the Laplace-Young equation, and it tells us that the pressure 

difference on either side of the film is given by the product of its surface tension. Now consider the case 

where a soap film is bounded by a wire, then   
     

 
 

 

 
 

 

  
 

 

  
   Where 

 

  
 

 

  
 are the normal 

curvatures of the surface in perpendicular directions. Since there is no enclosed volume, the pressure 

much be the same on both sides of the soap film. Hence,    , which reduces the Laplace-Young 

equation to the following.  

    
 

   
 

 

  
      

Which implies that    . Therefore every soap film is a physical model of a minimal surface.   

 The physics of a soap film is determined by surface tension. In this case, a soap film feels a lesser force 

outside of it then inside of it; otherwise it would implode. This is due to the pressure within the bubble 

being larger than the pressure outside. Soap films give us representations of minimal surfaces, since the 

inward force caused by the surface tension, shrinks the surface to the smallest area possible. This gives 

rise to the following theorem.  

Theorem 4.1.2: If a surface is area minimizing, then the surface is minimal. [Oprea143] 

Proof: Let          be a function of two variables. The surface area of the surface is given by 

        
    

     
 

 for a Monge patch, and since we are assuming that the surface is area 

minimizing, we can use the two-variable Euler-Lagrange equation, which gives us the necessary 

condition for          to be minimized. Consider the Euler-Lagrange equation for two independent 

variables.  

  

  
 

 

  

  

   
 

 

  

  

   
   

Now substituting   into the Euler-Lagrange equation, we have 

   
 

  
 

  

     
    

 
  

 

  
 

  

     
    

 
  

 
        

    
                  

     
    

  
 
 

 
        

    
                  

     
    

  
 
 

 

 
     

           
              

      
    

  
      

Whereby, we see that this will be zero when the numerator is equal to zero, and hence we have that a 

surface will be area minimizing if and only if it is minimal.                                                                          
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